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Recent events, such as the Northeast Blackout of 2003, have highlighted the need 

for accurate real-time stability assessment techniques to detect when an electric power 

system is on the brink of voltage collapse. While many techniques exist, most techniques 

are computationally demanding and cannot be used in an on-line application. A voltage 

stability index (VSI) can be designed to estimate the distance of the current operating 

point to the voltage marginally stable point during the system operation. In this research 

work, a new VSI was developed that not only can detect the system voltage marginally 

stable point but also is computationally efficient for on-line applications. Starting with 

deriving a method to predict three types of maximum transferable power of a single 

source power system, the new VSI is based on the three calculated load margins. In order 

to apply the VSI to large power systems, a method has been developed to simplify the 

large network behind a load bus into a single source and a single transmission line given 

the synchronized phasor measurements of the power system variables and network 
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parameters. The simplified system model, to which the developed VSI can be applied, 

preserves the power flow and the voltage of the particular load bus. The proposed voltage 

stability assessment method, therefore, provides a VSI of each individual load bus and 

can identify the load bus that is the most vulnerable to voltage collapse. Finally, the new 

VSI was tested on three power systems. Results from these three test cases provided 

validation of the applicability and accuracy of the proposed VSI. 
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CHAPTER I 
 

INTRODUCTION 
 
 

1.1 Introduction 

Voltage collapse or instability is emerging as a major concern to utility companies 

to maintain a stable power system operation as power system construction and operation 

practices have undergone substantial transformation over the past two decades. Factors 

that contribute to the voltage instability include the following: 

� The average increase in system loads has been steadily surpassing the 

construction of new power system infrastructure, including power plants and 

transmission lines. Power systems are being operated closer to their security 

and stability limits. 

� The expansion of the transmission network is severely limited by 

environmental constraints. Increasing the reactive power compensation is 

chosen by utilities as an alternative solution to building new transmission 

lines. 

� Long distance bulk power transfers have become ordinary under the 

deregulation incentives. 

� System operations are increasingly automated and fewer personnel are 

engaging in the supervision and operation of power systems.

 1  
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Voltage instability has caused several major power system collapses around the 

world. Table 1.1 lists a few major voltage instability incidents up to 1994. Voltage 

instability also partially contributed to several other recent major blackouts including the 

recent Northeastern US blackout that happened on August 14, 2003. Investigation results 

[1] of the August 2003 blackout have revealed that the blackout could have been 

prevented if proper automatic under voltage load shedding schemes had been placed at 

certain areas. 

Table 1.1 Voltage instable incidents [2] 
 

Date Location Time Frame 
December 1, 1987 Western France 4-6 minutes 
August 22, 1987 Western Tennessee 10 seconds 
July 23, 1987 Tokyo, Japan 20 minutes 
November 30, 1986 SE Brazil, Paraguay 2 seconds 
December 27, 1983 Sweden 55 seconds 
December 30, 1982 Florida 1-3 minutes 
August 4, 1982 Belgium 4.5 minutes 
December 19, 1978 France 26 minutes 
August 22, 1970 Japan 30 minutes 

 
 

Since the voltage instability issue started to emerge, significant research efforts 

from the power engineering community have been devoted to studying the voltage 

instability mechanism and to developing analysis tools and control schemes to mitigate 

the instability. Two monographs [2,3] and an individual book chapter of a textbook [4] 

have been devoted to this topic as well as numerous technical papers and reports. This 

literature has demonstrated that a good understanding of the voltage instability 

mechanism has been achieved. Meanwhile, many researchers agree that the voltage 

instability problem is a high order nonlinear problem as a large number of different types 
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of devices are involved in the voltage dynamics. Also a wide variety of modeling and 

simulation principles and analysis and control methods of the power system voltage 

stability have been developed.  

In general these voltage stability analysis methods are classified into two 

categories: dynamic simulation and static analysis.  Dynamic simulation can reproduce or 

predict the time response of the system voltage to a sequence of events and, therefore, 

help identify whether the system voltage is stable or not. It is a valuable method to reveal 

the mechanisms of voltage instability and to verify the corrective strategies designed to 

improve voltage stability. However, the dynamic simulation method depends on proper 

modeling of numerous devices playing roles in the voltage instability and requires 

significant computation time for power systems with a reasonable size. Although the 

Quasi-Steady State (QSS) modeling technique, combined with the new class of computer 

simulation software can considerably reduce the simulation time, the dynamic simulation 

method is still too time consuming to be applied in real time. The majority of static 

methods are based on power flow formations to evaluate voltage stability in various 

terms, such as load margins, Jacobian matrix eigenvalues, and load flow feasibility. 

Various voltage stability indices (VSIs) based on these static analysis results have been 

proposed to indicate the distance between the current power system status to the voltage 

marginally stable point. These indices can be used to initiate different automatic voltage 

collapse countermeasures such as power system redispatch, var compensation device 

switching and load shedding.  However these existing power flow based indices may be 

too slow to detect the short-term voltage instability as most power flow algorithms 
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    4
depend on the power system state estimator, which is a part of the Supervisory Control 

and Data Acquisition (SCADA) and Energy Management System (EMS), to obtain the 

power system topology and other system variables. Even with modern high performance 

computer technology, the state estimation function typically takes minutes to update the 

snapshot of a power system. In addition, power flow algorithms normally do not consider 

load recovery dynamics, which is an important factor contributing to the voltage 

instability. 

Technology advancements in the development of Intelligent Electronic Devices 

(IEDs) that are used for monitoring, protection, and control of power system operation 

have provided us new opportunities in the development of a new strategy for improving 

power system stability. Synchronized phasor measurement technology, which directly 

measures power system state variables (voltage phasors) and other variables, together 

with high-speed reliable communication infrastructures make it possible to build wide 

area measurement and protection systems [5] to complement classic protection and 

SCADA/EMS applications and to prevent cascading system level outages. The 

synchronized phasor measurement units (PMUs) have been recently available at a small 

cost as part of other substation measurements, for example, from protective relays [6]. 

These wide area measurement systems create new platforms for advanced high-speed 

wide area protection and control functions including voltage collapse prevention.  

1.2 Objectives of the dissertation 

The objective of this research is to develop a computationally efficient and 

reliable voltage stability index (VSI) based on synchronized phasor measurement 
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    5
technology. The developed VSI is a reliable assessment of the voltage stability margin of 

an individual load and is suitable for on-line implementation for detecting the emerging 

short-term and long-term voltage instability. The sub-tasks of developing this improved 

voltage stability index are the following: 

� Development of a new computationally efficient load margin assessment 

method based on synchronized phasor measurements and the power 

system network topology and parameters. 

� Derivation of VSI of individual load buses and the power system based 

upon the calculated load margin. 

� Implementation and testing of the new VSI on various power systems. 

1.3 Outline of the dissertation 

The dissertation is organized as follows: 

Chapter 2 serves as an introduction to voltage stability problem. First, voltage 

stability is defined and classified, followed by an illustration of the voltage instability 

mechanism.  

Chapter 3 reviews existing voltage stability assessment methods and briefly 

introduces existing voltage stability indices. 

In Chapter 4, the limitations of existing VSIs are summarized and the need for an 

improved VSI is consequently justified. A work plan for developing a new VSI is 

presented as well. 

Chapter 5 describes the development of the new voltage stability index. Starting 

with a simple two-bus power system model, a new load margin assessment method and 
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its related VSI are derived. Then the developed VSI is extended to load buses of a large, 

complex power system by simplifying the network behind each load bus into an 

equivalent single source and a single line model. 

Chapter 6 shows the application of the proposed VSI on three widely used test 

systems. Test results are analyzed and discussed to verify the correctness and 

applicability of the proposed VSI. The summary and the future work are presented in 

Chapter 7. 
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CHAPTER II 
 

VOLTAGE STABILITY PROBLEM 
 
 

2.1 Introduction 

Modern power systems are high-order, multivariable, dynamic systems whose 

responses to disturbances depend on the different characteristics of a wide array of 

devices. Power system stability generally refers to the capability of a power system to 

remain in a state of operation equilibrium under normal operation conditions and to 

regain an acceptable state of equilibrium after being subjected to disturbances [4,7].  

Figure 2.1 shows the overall picture of the power system stability problem, which is 

categorized by the type of system variables in which instability can be observed and 

further by the time span that must be taken into consideration in order to assess the 

stability. 

The rotor angle stability problem involves the study of electromechanical 

oscillations inherent in power systems and the ability of a power system to remain in 

synchronism after being subjected to a disturbance. Depending on the nature and size of 

the disturbance, the rotor angle stability is usually further characterized into two 

categories: small-signal stability and transient stability. Small-signal stability refers to the 

ability of the power system to maintain generator synchronization under small 

    7
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Figure 2.1 Classification of power system stability problems [4] 
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disturbances, such as small variations in loads and generation, while the transient stability 

refers to the ability of the power system to maintain synchronism after severe transient 

disturbances, such as a transmission line fault and tripping or loss of a generator unit [4]. 

Rotor angle stability has been the main focus of the system stability study by the power 

system community since the formation of the interconnected power system. As a result, it 

has been greatly mitigated by various technologies, such as fast operating circuit 

breakers, fast generator control systems, and various special power system stability 

controls. However, under stress conditions the power system may exhibit another type of 

unstable behavior, which is characterized by voltage drops at certain areas, escalating to 

cascading collapse without necessarily losing its synchronism between generators. This 

phenomenon is referred to as voltage collapse. Causes for voltage collapse include steady 

load increment and loss of transmission lines or generators. All the instability phenomena 

shown in Figure 2.1 may not be completely separated during power system collapse. 

Some power system blackout events have demonstrated that these instability phenomena 

happened at different stages as the system collapse evolves although causes of the 

blackouts are different. Historic analysis of power system blackouts reveals a general 

pattern: 

� Most events happened when the power system had a heavy load. 

� A series of initial outages of transmission lines or generators further 

weakened the power system. 
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� Partial power system oscillation started to happen, system frequency 

started to shift from the normal operation frequency, and the voltage 

started to deteriorate. 

� More generators and transmission lines were tripped, and the system may 

split into small islands. 

2.2 Definition and classification of voltage stability 

2.2.1 Definition of voltage stability 

As voltage instability involves a wide range of phenomena, voltage stability may 

mean different things to different engineers. A power system becomes voltage unstable 

when voltages uncontrollably decrease due to disturbances, such as an outage of 

equipment (generator, line, transformer, etc.), an increment of load demand, or a 

decrement in power generation. There are several definitions of voltage stability existing 

in the literature. These definitions consider time frames, system states, and large or small 

disturbances. The variations of the definition reflect the fact that there is a broad 

spectrum of phenomena that could occur during voltage instability. 

1. CIGRE Definition [8]: 

� A power system at a given operating state is small-disturbance voltage 

stable if voltages near loads are identical or close to the pre-

disturbance values following any small disturbance. 
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� A power system at a given operating state and subject to a given 

disturbance is voltage stable if voltage near loads approaching post-

disturbance equilibrium value. 

� A power system undergoes voltage collapse if the post-disturbance 

voltages are below acceptable limits. 

2. IEEE Definition [9]: 

� Voltage Stability is the ability of a system to maintain voltage so that 

when load admittance is increased, load power will increase, and so 

that both power and voltage are controllable. 

� Voltage Collapse is the process by which voltage instability leads to 

loss of voltage in a significant part of the system. 

� Voltage Security is the ability of a system not only to operate stably, 

but also to remain stable (as far as the maintenance of system voltage 

is concerned) following any reasonably credible contingency or 

adverse system change. 

� A system enters a state of voltage instability when a disturbance, 

increase in load, or system change causes voltage to drop quickly or 

drift downward and operators and automatic system controls fail to 

halt the decay. The voltage decay may take just a few seconds or ten to 

twenty minutes. If the decay continues unabated, steady-state angular 

instability or voltage collapse will occur. 
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3. IEEE/CIGRE Joint Definition [7]: 

� Voltage stability refers to the ability of a power system to maintain 

steady voltages at all buses in the system after being subjected to a 

disturbance from a given initial operating condition. 

� Voltage collapse is the process by which the sequence of events 

accompanying voltage instability leads to a blackout or abnormally 

low voltage in a significant part of the power system. 

The CIGRE definition is similar to other dynamic system stability problems. The 

IEEE definition emphasizes more the actual process of the power system network. The 

common ground between these definitions of voltage stability includes the following: 

voltage stability is a dynamic phenomenon, the system voltage must be controllable at the 

level that is acceptable, and the power system can survive disturbances to the system. 

Also, voltage collapse and voltage instability are interchangeable and both refer to the 

loss of voltage stability. 

2.2.2 Classification of voltage stability 

Power system stability is essentially the capability of the power system to 

maintain equilibrium with system variables in an acceptable range after being subjected 

to a wide range of disturbances no matter how small or large. The size of the disturbance 

influences the method of analysis and prediction of the stability. Voltage stability can be 

classified into the two following categories based on the size of disturbance [7,8]: 

� Large-disturbance voltage stability refers to the ability of a power system 

to maintain steady acceptable voltages following a large disturbance, such 
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as system faults, loss of generation, or line tripping. The nonlinear 

response of a power system, including the interaction between numerous 

continuous and discrete control and protection devices, needs to be 

examined to determine large-disturbance voltage stability. Considering the 

nature of devices involved in a large system disturbance, the study period 

of interest may extend from a few seconds to tens of minutes. 

� Small-disturbance voltage stability refers to the ability of a power system 

to maintain steady acceptable voltages when subjected to small 

perturbations, such as incremental changes of system load. For the 

analysis of small-disturbance voltage stability, it is reasonable to consider 

the linearized system model around the operation point. Discontinuous 

models for tap changing transformers and other equipment may be 

replaced with approximate continuous models. The study period of small-

disturbance voltage stability may range from minutes to hours. 

Figure 2.2 illustrates the time responses of different power system apparatuses to 

disturbances and voltage change. Considering the time range, voltage stability problems 

can be classified into two categories: 

� Short-term voltage stability involves the dynamics of fast acting load 

components, such as induction motors, fast-controlled devices, and HVDC 

converters. The time frame of interest is several seconds, and analysis 

requires solution of appropriate system differential equations.   
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� Long-term voltage stability involves slower acting apparatuses, such as 

ULTC, thermostatically controlled loads, and overexcitation limiter 

(OXL).   The time frame of interest ranges from several seconds to tens of 

minutes. Steady state or quasi-steady-state (QSS) analysis can be used to 

estimate stability margins, identify factors influencing stability, and devise 

remedial actions.  

 

 
 
Figure 2.2 Time frame for voltage stability phenomena [2] 
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Proper classification of the voltage stability phenomena as shown above helps to 

reduce complex issues into a manageable problem by making simplifying assumptions. 

Different voltage stability problems can be analyzed using an appropriate degree of detail 

of system representation and appropriate analytical techniques.  

2.3 Voltage collapse mechanism 

Voltage stability is the capability of a power system to maintain the balance 

between load demand and the power that can be generated and transmitted to a load 

center. After a sudden voltage dip due to a disturbance, the aggregated load tends to 

restore its pre-disturbance power consumption through motor slip movement, a tap 

changing transformer, thermostats, and so on. When steady loads increase or the load 

restoration is beyond the capability of the transmission network and the power generation 

system, a run-down situation causing voltage instability occurs. Three important factors 

are involved in power system voltage instability: load demand, transmission network 

capacity, and power generation capacity. All three elements will be elaborated on 

individually as follows to show how they affect voltage stability. 

2.3.1 Power system load 

Load dynamic response to voltage variation is a key mechanism of power system 

voltage instability. Numerous technical papers have been written describing the nature of 

load and various approaches to modeling it. Activities are from different organizations, 

such as the IEEE task force and the CIGRE working group [10,11,12], and individuals 

[13,14]. The “load” can have different meanings to different power system engineers.  
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Depending on the type of analysis performed, the load models can be classified into two 

categories: static load models and dynamic load models. 

A static load model characterizes the power consumed by the load as algebraic 

functions of the voltage magnitude. A widely used static load model is the exponential 

load model as shown by Equations 2.1 and 2.2, where Po and Qo are load consumptions at 

the reference voltage Vo and exponents α and β represent the load characteristics. Table 

2.1 lists the exponents of some types of load. A special form of the exponential load 

model is the polynomial load model or ZIP load model, which consists of three types of 

load: constant impedance, constant current, and constant power. The real and reactive 

power consumption of the ZIP load model is shown by Equations 2.3 and 2.4, where 

.  It is worth noting that these exponential load models 

are only valid when the load voltage magnitude is within a certain range (e.g. 

1=++=++ QqQiQzPpPiPz kkkkkk

2.16.0 <<
oV

V ). Outside this voltage range, the load characteristics may be completely 

different.  
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Table 2.1 Exponents of different loads [3] 
 

Load Type α β 
Incandescent lamps 1.54 - 
Air conditioners  0.50 2.5 
Furnace fan 0.08 1.6 
Battery charger 2.59 4.06 
Electronic compact fluorescent 0.95-1.03 0.31-0.46 
Conventional fluorescent 2.07 3.21 

 
 

One definition of a load is the portion of the system that is not explicitly 

represented in the power system model, but rather is treated as if it were a single power-

consuming device connected to a bus in the system model [11]. In this context, the 

aggregated load for transmission system analysis includes not only the connected power 

consumption devices, but also some of the following devices: 

� Substation step-down transformers, including LTC 

� Subtransmission and distribution feeders 

� Voltage regulators 

� Shunt capacitor banks and various reactive power compensation devices 

The numerical representation of the aggregated load for voltage stability analysis 

involves several aspects that are not captured by static exponential load models. These 

factors include dynamics due to voltage sensitive loads, thermostatically controlled loads, 

voltage regulating device behavior, nonlinearities in voltage characteristics at low 
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voltages due to motor stalling and tripping, discharge lighting, and others. A good model 

of the aggregated dynamic load with these effects and reasonable computation efficiency 

is still the subject of ongoing investigation. 

In references [13,14,15], simplified first order differential load models are 

proposed intending to capture the essential dynamic behavior of loads with different 

transient and steady state characteristics, such as thermostatically controlled loads and 

some motor-driven loads. While the form in which these models are presented appears 

quite different, they all, except [14], can be generalized to the block diagram shown in 

Figure 2.3, where Xp is an internal state variable modeling the load recovery dynamics 

and Pd is actual active power load.  The active power load model is parameterized by 

steady state power Ps, transient power Pt , and load recovery time constant Tp. The Ps and 

Pt are expressed by Equations 2.5 and 2.6, where Po is the rated power consumption of 

the aggregated load at the rated voltage Vo. Equations 2.7 and 2.8 represent the load 

model in a general dynamic system format. The only difference between [13] and [14] is 

that the summation between the transient power Pt and the internal state variable Xp is 

replaced by a multiplication. 

 

 
 

Figure 2.3 Simplified generic dynamic load model 
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recovery time constant Tq. Typical values for these parameters are obtained through 

historical data analysis and are listed in Table 2.2. Figure 2.4 illustrates the load recovery 

dynamics in terms of voltage change, where Tp = 60 seconds, αs = 1.5, and αt = 2.0. Due 

to the load recovery dynamics, a power system, which survives a transient event, may 

experience potential long-term voltage instability as its loads tend to recover their power 

demand to the pre-disturbance level.  

Table 2.2 Typical parameter values for generic load model [13] 
 

Tp Tq αs αt βs βt 
60-300s 30-200s 0-2 1-3 2-5 4-6 
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Figure 2.4 Load dynamics illustration 
 
 

2.3.2 Line power transmission capacity 

A major factor contributing to voltage instability is the voltage drop that occurs 

when active and reactive power flow through the line impedance of the transmission 

network. The transmission line impedances dictate the maximum power that can be 

transmitted through the lines between the source and the load. Under a deregulation 

environment, bulk power transfer over a long distance is primarily limited by the 

transmission system characteristics, as the transmission system was not originally 

designed for a large quantity of power transfer over long distances. Pushing the power 

transfer closer to the maximum capacity of the transmission network is one of the major 

causes of voltage instability. 

     

To illustrate the maximum transferable power of the transmission lines, a simple 

two-bus power system model, as shown in Figure 2.5, is analyzed. The source with a 
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constant voltage, Vs, supplies a load through a transmission line, which is simplified to a 

reactance, jX. The active and reactive power received by the load can be expressed by 

Equations 2.9 and 2.10. Combining Equations 2.9 and 2.10 and eliminating the δ to solve 

the Vr, one can get Equation 2.11. Because Vr is a physical variable, a solution always 

exists. Therefore, the Inequality 2.12 should always be true. 

 

 
 
Figure 2.5 A two-bus power system model 
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As shown in Equation 2.11, the load voltage Vr depends on the sending end 

voltage Vs, line impedance X, and load demand values, P and Q. A three-dimensional 

surface, as shown in Figure 2.6, illustrates their relationship. Figure 2.7 is the same 

surface, but viewed from a side angle. The upper part of the surface corresponds to the 

higher voltage solution, which is the stable region. When the load voltage is at the lower 
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part of surface, which is the unstable region, an attempt to increase load demand further 

decreases the load voltage as explained by bifurcation theory [16]. Projecting the three-

dimensional surface on the PQ plane produces a half-parabola as shown by Figure 2.8, 

which meets Inequality 2.12. The color part indicates the possible complex power, 

, that can be transferred by this transmission line given a certain sending end 

voltage. The boundary of the color part indicates the complex power transfer limit, S

QjPS +=

max, 

which is proportional to the square of the sending end voltage, Vs
2, and the line 

admittance, 
X
1 . The maximum transferable active power, , is equal to maxP

X
Vs

2

2

 when Q 

= 0, while the maximum transferable reactive power, Q , is equal to max X
Vs

4

2

, which is half 

of the Pmax, when P = 0. The maximum transferable active power decreases as the 

reactive power transfer increases. Similarly, the maximum transferable reactive power 

decreases as the active power transfer increases. Also, it is more costly to transfer the 

reactive power than the active power through the inductive line. 
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Figure 2.6 Three-dimensional plot of PQV (View from front) 
 

 
Figure 2.7 Three-dimensional plot of PQV (View from side) 
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Figure 2.8 Transferable PQ power 
 
 

2.3.3 Power generation capacity 

     

Power generation capacity of the power system is of the same importance as the 

transmission system capacity to maintaining the system voltage stability. Normally, 

sufficient active power generation capacity is scheduled to supply the load and to 

withstand possible contingencies through proper power system operation planning. 

Reactive power generation, however, is more difficult to schedule, as the load reactive 

power demand normally increases as the system voltage decreases and it is more difficult 

to transfer reactive power through transmission lines. Under voltage stress conditions, 

induction motor loads are prone to stall and significantly increase the reactive power 

consumption. Contrary to this, the output of various reactive generation devices, such as 

the shunt capacitor bank, which are installed close to the load center, decreases as the 
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load voltage decreases. Therefore, the aggregated load reactive power demand increment 

due to load voltage decline increases the stress on the transmission networks and causes 

further voltage reduction. Voltage stability is threatened when a disturbance increases the 

reactive power demand beyond the sustainable capacity of the available reactive power 

resources. In almost all voltage instability incidents, at least one crucial generator is 

operating at its maximum reactive power generation capacity. As voltage stability is 

closely coupled with the system reactive power generation capacity, studying the 

characteristics and limitations of these reactive power generation equipment are of great 

importance for the analysis of the voltage stability problem. 

Synchronous generators are the primary source of active and reactive power and 

to a great extent are responsible for the voltage support across the power system. The 

active power output of a generator is normally limited by the capacity of its primary 

mover. With the fixed active power output, the reactive power output is largely limited by 

its armature and field winding heat limits. When the power output is within the capacity 

limit of a generator, the terminal voltage of the generator is regulated by its automatic 

voltage regulator (AVR) and maintained constant. During conditions of system low 

voltages, the large reactive power demand may cause the field current and/or the 

armature current to reach its limit. Most modern generators have overexcitation limiters 

(OXLs) installed to prevent overheating on field circuits and rotors. Although there are 

some variations in the implementation of OXLs [17,18], the impacts of OXLs on general 

terminal voltage are similar. After the large generator output causes the excitation system 

field current to reach its limit, the generator field current is automatically fixed by its 
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OXL to the maximum permissible value. With the constant field current, the point of 

constant voltage is pulled back behind the synchronous reactance instead of at the 

generator terminal and, therefore, the generator loses its capability to maintain its 

terminal voltage constant. This mechanism equivalently increases the network reactance 

significantly [4]. Figure 2.9 illustrates the simplified steady-state equivalent circuit of a 

round-rotor synchronous generator, where Vt is the generator terminal voltage and Xs is 

the synchronous reactance. When the OXL reaches its limit, the ifd and Eq are fixed 

instead of the Vt. 

 

 

Figure 2.9 Steady-state equivalent circuit of a synchronous generator [4]  
 
 

Equation 2.13 illustrates the relationship between the field current Ifd and the 

reactive power, Q, output of the round-rotor synchronous generator under steady-state 

condition as illustrated in Figure 2.9, where P is the active power output and X is machine 

internal impedance. The equation is in non-reciprocal per unit. When Ifd reaches the OXL 

limit due to the large reactive power demand, the machine terminal voltage Vt meets 

Equation 2.14, where the Ifd_limit typically ranges from 2.0 to 4.0 in per unit. Accordingly, 

the generator terminal voltage decreases as the reactive power out increases. From a 
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voltage support perspective, a constant generator terminal voltage indicates the generator 

still has a certain degree of reactive power generator capacity. Otherwise, an abnormally 

low generator terminal voltage indicates the generator has reached its capacity limit. 

222 )()(
V
PX

V
QXVI fd ++=  (2.13) 

22
_

2
___ 44242

2
1 PXIQXIQXIV imitlfdimitlfdimitlfdimlQ ⋅−⋅⋅−+⋅−=  (2.14) 

There are three major types of reactive power compensation devices: shunt 

capacitors; SVCs; and series capacitors, used by utilities to provide reactive power and 

voltage support.  

Shunt capacitors are the most inexpensive sources for providing reactive power 

and voltage support. They are typically installed close to the load center to reduce the 

need for long distance transmission of reactive power and save the controllable reactive 

power supply from generators and Static Var Compensators (SVCs). However, the 

reactive power generated by shunt capacitors is proportional to the square of the voltage. 

Under voltage stress conditions, the var support from the capacitor banks drops 

quadratically as the voltage drops, thus contributing to the voltage instability problem. In 

addition, voltage regulation becomes more difficult if the system is heavily compensated 

by shunt capacitor banks; stable operation is probably unattainable when shunt capacitor 

bank compensation is beyond a certain level [4]. 

SVC is a voltage controlled shunt compensation device that can either generate or 

absorb reactive power to regulate its bus voltage through automatically tuning its shunt 

susceptance. The typical operation speed of the SVC is within several cycles. Therefore, 

     



www.manaraa.com

    28
SVCs are very effective in terms of mitigating angle instability and short-term voltage 

instability.  There is no control or instability problem caused by an SVC within its 

regulating range. After reaching its limit, the SVC behaves as a mere shunt capacitor (or 

reactor), with the reactive power output proportional to the square of the voltage.  A static 

var system (SVS) is an aggregation of SVCs and Mechanically Switched Capacitors 

(MSCs) or Reactors (MSRs) whose outputs are coordinated. 

Series capacitors are occasionally installed on long transmission lines to reduce 

the line characteristic impedance and, therefore, increase the network transmission 

capacity. The reactive power supplied by series capacitors is proportional to the square of 

the line current and is independent of the bus voltages. It has a favorable affect on voltage 

stability. Because the series capacitors impose difficulties on the line protection systems 

and their maintenance is costly, series capacitor installation on the transmission system is 

limited, and its impact on the voltage stability is not very significant. 

Voltage stability is directly related to the reactive power load-generation-

transmission balance. Maintaining enough reactive power generation capacity is helpful 

for regulating system voltage and improving voltage stability. Rapid loss of reactive 

power generation reserve is a sign of impending voltage instability. 

2.3.4 A simple example to illustrate the voltage instability 

The simple power system shown in Figure 2.10 is used to illustrate the voltage 

instability mechanism. The source with a fixed voltage, V , feeds the dynamic load 

through two parallel lines and an Under Load Tap Changing (ULTC) transformer. For the 

0∠s
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sake of simplicity, the resistances of the two lines and the transformer are neglected and 

the load is assumed to be a purely active power load. 

 

 

Figure 2.10 A three-bus power system to illustrate the voltage instability 
 
 

The two dashed lines shown in Figure 2.11 illustrate the load steady state and 

transient characteristics, respectively. The rated load, , is equal to 1.6 pu with transient 

exponential parameter, 

0P

0.2=tα , and steady exponential parameter, 2.1=sα . The 

outmost PV curve in black corresponds to the system with both transmission lines in 

service and ULTC ratio n . Point A is the steady operational point during normal 

operating conditions. If one of the transmission lines is suddenly opened due to a fault 

clearance, the PV curve with a transformer tap position n equal to 1.0 shows the 

corresponding system PV curve before the tap-changer operates. Due to the sudden 

voltage change, the load demand complies with the load transient characteristics. 

Therefore, point B is the system operational point right after the line is opened. If the tap-

changer is blocked after the line is opened, the system operational point will move from 

point B to point C along the PV curve with  as the load tries to restore the power 

from the transient to steady state condition. Because the operational point C is above the 

nose point, which corresponds to the maximum transferable power of the system, the 

0.1=

0.1=n
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system operational point is finalized at the point C and the system voltage is stable. 

However, if the load voltage is below the minimum voltage threshold of the tap-changer 

after the line is opened, the ULTC automatically increases the transformer ratio n to 

restore the load voltage. As the ULTC finalizes its tap ratio at 1.1, which normally is the 

maximum tap ratio, the possible steady state operational point passes the nose point of 

the corresponding PV curve with n = 1.1. As the load tries to restore its demand, the 

system voltage decreases further along the lower part of the PV curve and the load 

voltage eventually collapses. 

This simple power system is also modeled in Power Systems CAD (PSCAD) to 

obtain the time based dynamic simulation result. One of the transmission lines is opened 

at the 10th second.  Figure 2.12 shows the load demand P (y axle) vs. time in seconds (x 

axle).  Figure 2.13 shows the load voltage Vr (y axis) vs. time in seconds (x axis). Figure 

2.14 shows the load voltage Vr (y axis) vs. load demand P (x axis), which matches the 

trajectory as shown in Figure 2.11. 
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Figure 2.11 Steady state analysis results of the simple power system 
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Figure 2.12 Load active power P versus time for Figure 2.10 
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Figure 2.13 Load voltage Vr versus time for Figure 2.10 
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Figure 2.14 Load voltage Vr vs. load reactive power P for Figure 2.10 
 

2.4 Summary 

In this chapter, the definition and classification of the voltage stability problem 

are briefly introduced. Three important factors that affect the system voltage stability are 

summarized: load characteristics, line power transmission capacity, and power generation 

capacity of the system. One example is used to illustrate how the line transmission 

capacity and load dynamics together contribute to the voltage collapse. Voltage 

instability is a dynamic phenomenon. But, steady state analysis helps us to better 

understand the mechanism of voltage stability and, therefore, enables us to devise 

methods to mitigate the voltage instability problem.  
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CHAPTER III 
 

LITERATURE REVIEW OF VOLTAGE STABILITY ASSESSMENT 
METHODS  

 
 

Power systems are high-dimensional, nonlinear systems that operate in constantly 

changing environments; loads, generator outputs and key operating parameters are 

changing continuously. Therefore, voltage instability is a nonlinear, time variant, 

dynamic phenomenon. The existing voltage stability assessment methods and related 

VSIs can be classified into two categories: dynamic simulations and steady-state based 

analysis.  

3.1 Power system dynamic modeling and simulation 

A power system can be modeled by a large set of differential, discrete and 

algebraic equations as illustrated by Equations 3.1 - 3.4, where y represents the vector of 

bus voltages, x is the short-term state vector, and Zc and Zd are the continuous and 

discrete long-term state vectors, respectively[3]. Equation 3.1 captures the short-term 

system dynamics, such as generators, induction motors, HVDC components and SVCs. 

Equation 3.2 represents the power system long-term continuous dynamics, such as 

thermostatic load recovery and generator voltage regulator behavior. Equation 3.3 models 

the power system long-term discrete dynamics, such as LTC tap changes, shunt 

capacitor/reactor switching, and overexcitation limiters. The combination of Equations

    34
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3.2 and 3.3 models the power system long-term dynamics. Equation 3.4 stands for the 

equilibrium of the power system and is a set of network-based power flow equations. 

),,,( dc zzyxfx =
•

 (3.1) 

),,,( dccc zzyxhz =
•

 (3.2) 

))(,,,()1( kzzyxhkz dcdd =+  (3.3) 

),,,(0 dc zzyxg=  (3.4) 

With reasonable simplifications and assumptions, a very detailed and fairly 

accurate model of a power system can be obtained based on the knowledge accumulated 

to date. A four-bus example system as shown in Figure 3.1 is modeled in detail by a set 

of equations as described in [3]. Tab. 3.1 lists the number of equations and variables. 

There are a total of twenty-two equations for modeling this four-bus system. This 

example illustrates that a large number of equations are necessary to model a realistic 

power system with hundreds or thousands of nodes. The Quasi Steady-State (QSS) 

approach [3,19] can reduce the number of the equations by assuming the power system is 

short-term stable and, therefore, replacing these short-term differential equations with 

fewer algebraic equations. Powerful simulation software packages equipped with 

advanced numerical solution methods, such as PSS/E and EUROSTAG, have been 

developed to handle the whole set of equations of large power systems and simulate 

system dynamics over a long period of time. Dynamic simulation can reproduce the time 

response of the power system to a sequence of events and help to identify whether the 

system is stable or not. However, time-domain simulations are still time consuming in 
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terms of computation burden and engineering work required for the modeling and 

analysis of results. Also, dynamic analysis does not provide much information regarding 

the sensitivity or stability margin. These issues prevent dynamic simulation from being 

used for on-line applications. Dynamic simulations are mostly used as tools for system 

planning, analysis, and protection and control system coordination studies. 

 

 
 

Figure 3.1 A four-bus power system [3] 
 
 

Table 3.1 Dynamic model equations for the 4-bus example system [3] 
 

3.1 Equations 3.1 Variables 

Short-term 8 equations x : Rotor angle δ, rotor speed ω, 
Internal voltage , field voltage 
V

'
qE

fd, Second exciter internal variable 
xoxl, Induction machine slip S.   

Long-term 
continuous 

2 equations zc : First exciter internal variable xt 

Long-term 
discrete 

1 equation zd : LTC tap position r 

Network 
Equations 

11 equations y : Bus voltage real part and imaginary 
part: vx1, vy1, vx2, … vy4 
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3.2 Steady-state analysis 

As dynamic simulation for voltage stability analysis is unsuitable for on-line 

applications due to its high computation demand, significant research efforts have been 

devoted to finding various analytical techniques, including voltage stability indices 

(VSIs), to estimate the security of voltage stability based on the power system steady-

state model. The steady–state model consists of only algebraic equations, such as the 

network Equation 3.4, and assumes all other time derivatives of the state variables (e.g. 

, ) are equal to zero and discrete state variables are constant (e.g. ). 
•
x cz

•
)()1( kzkz dd =+

3.2.1 Power flow analysis 

The steady-state power flow problem is directly derived from the network 

equations as shown in Equation 3.5, where I is the node injection current vector, Y is the 

network bus admittance matrix, V is the node voltage vector, and S=P+jQ is the node 

injection complex power vector. Equation 3.5 can be further expanded to two nonlinear 

Equations 3.6 and 3.7, where Pi and Qi are the active and reactive power injected at the 

bus, i, respectively; Vi and δi are the voltage magnitude and phase angle at bus i; and 

ijijY φ∠  is the ijth element of the complex bus admittance matrix Y. 
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The underlying principle of the power flow problem is to solve for the bus 

voltages by solving the nonlinear equations given the system loads, generation, and 

network configuration. The most general and reliable algorithm to solve the power flow 

problem is the Newton-Raphson method [20,21], which involves an iterative solution of 

the linearized mismatch Equation 3.8 as the first term of a Taylor expansion of the 

nonlinear equations, Equations 3.6 and 3.7. The derivatives of the mismatch equations are 

summarized by Equations 3.9 - 3.16. The mismatch matrix is also called the Jacobian 

matrix. 
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Nonlinear dynamic system analysis techniques, such as bifurcation theory, have 

been used to study voltage collapse and to devise ways of avoiding it. For some loads 

with special dynamic characteristics, the maximum loading point of the power generation 

and transmission system is not necessarily the saddle point node of the overall power 

system, and the system voltage may still be able to recover after the load demand passes 

the maximum loadable point [14]. But, for practical voltage stability analysis, the 

maximum loading point of the power system is often exchangeable with the voltage 

marginally stable point because chances are high that the system voltage will collapse if 

the load demand has reached the maximum loading point of the system and there is not 

any remedial action taken [16,22,23]. Therefore, almost all the power flow based voltage 

stability assessment methods and related VSIs are based on the approximation that the 

system load reaching the maximum loading point is equivalent to the system reaching the 

voltage marginally stable point.  

3.2.2 PV/VQ curve and continuation power flow 

System power flow analysis is often a useful tool for voltage stability analysis by 

monitoring system voltages as a function of load change.  The maximum loading point of 

a particular load bus can be calculated by starting at the current operational point, making 

a small increment in load with an assumption of a certain load pattern (e.g. constant 
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power factor), and re-computing the power flow until the maximum loading point is 

reached. Meanwhile, P-V and V-Q curves for that load bus can be generated to visualize 

the maximum loading point. Figure 3.2 shows a set of PV curves with different load 

factors of the two-bus power system model as shown in Figure 2.5. For traditional power 

flow algorithms, the load point at which the power flow diverges and the Jacobian matrix 

of the system becomes singular is considered as the maximum loading point. A 

modification of the Newton-Raphson method known as the continuation power flow [24] 

method depends on a predictor-corrector scheme and introduces an additional equation so 

that the augmented Jacobian matrix is not singular at the maximum loading point. The 

continuation power flow method greatly facilitates the calculation of the maximum 

loading point and the plotting of complete PV and QV curves. 

 

 

Figure 3.2  PV curves of the two-bus power system as shown in Figure 2.5 
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PV and QV curves are widely used by utilities for planning and analysis. But 

these curves are for individual load buses; that is, the stability characteristics are 

established by stressing each bus independently, which is not representative for realistic 

power system operation. Also, load increase patterns, which are normally hard to predict 

under voltage stress conditions, are normally assumed when calculating these curves. 

3.3 Voltage stability indices 

The main objective of VSIs is to estimate the distance from the current operating 

point to the system voltage marginally stable point. Numerical indices help operators to 

monitor how close the system is to collapse or to initiate automatic remedial action 

schemes to prevent voltage collapse. Most of the VSIs that have been proposed are based 

on steady state power flow formulations besides a couple of direct measurement based 

VSIs. The following important existing indices will be discussed: 

� Singular values and eigenvalues of the power flow Jacobian matrix 

� Sensitivity factors 

� Existence of multiple power flow solutions 

� Load flow feasibility 

� Thevenin equivalent impedance 

� Load margin 

� Voltage 

� Power system reactive power reserve 
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3.3.1 Singular values and eigenvalues of Jacobian matrix 

When the power system steady-state load reaches the system maximum loading 

point, the corresponding Jacobian matrix of the power flow mismatch equation (Equation 

3.8) becomes singular and, therefore, the conventional Newton-Raphson based power 

flow algorithms have difficulty with convergence. The full-sized Jacobian matrix can be 

further reduced to a matrix JR, which presents only the linearized relationship between 

the change of bus voltage magnitude, , and bus reactive power injection, ∆ , by 

making  as shown in Equation 3.17. Because the reactances of the transmission 

lines are much larger than their resistances, bus voltage magnitudes are more sensitive to 

 than 

V∆ Q

0=∆P

Q∆ P∆ . The reduced Jacobian matrix provides a convenient platform for system 

voltage stability evaluation as it focuses more on the study of the reactive power and 

voltage magnitude relationship and minimizes computational effort.  
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The minimum singular value and the minimum eigenvalue are two voltage 

stability indices that are obtained from the different decomposition methods of the same 

Jacobian matrix. And the interpretations of these two indices’ results are also similar. 

The singularity of a matrix is decided by the minimum singular value of the 

matrix, which can be obtained through singular value decomposition (SVD) as illustrated 

by Equation 3.18, where the ui and vi are the ith columns of the orthogonal unit matrixes 

U and V respectively, and the matrix Σ  is symmetrical with the diagonal values as σi and 

all other elements are zero.  
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The main diagonal values of matrix  are the singular values, which are 

nonnegative. If the minimum singular value is zero, the corresponding matrix is singular. 

Therefore the smallest singular value of the Jacobian matrix can be used as a secure index 

to determine how close the Jacobian matrix is to being singular and, consequently, how 

close the system is to being voltage instable. This method was first introduced by Thomas 

and Tiranuchi in [30,31]. To improve the computational speed of the SVD, Löf in [32] 

developed a fast algorithm to calculate the minimum singular value by preserving the 

sparsity of the Jacobian matrix. 

Σ

The eigenvalue decomposition for the reduced Jacobian matrix, assuming it is 

diagonalizable, can be expressed by Equation 3.19, where  is a diagonal matrix of 

eigenvalues

Λ

iλ , Φ is the right eigenvector matrix of JR, and Γ is the left eigenvector of JR, 

and φi and γi are the ith column of matrices Φ and Γ respectively. The eigenvalue iλ  is 

just a scalar that can vary from positive to negative. 
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iiiRJ
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Modal analysis of the power flow Jacobian matrix has revealed that if 0>iλ , the 

ith modal voltage and the ith modal reactive power variation are along the same direction, 

indicating that the system is voltage stable. On the hand, if 0<iλ , the ith modal voltage 

and the ith modal reactive power variation are along opposite directions, indicating that 

the system voltage is unstable. When 0=iλ , the ith modal voltage collapses because any 
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change in that modal reactive power causes infinite change in that modal voltage [25,26]. 

Under stable voltage conditions, all the eigenvalues are positive. The minimum 

eigenvalue moves towards zero and eventually becomes negative as the system 

transitions from a voltage stable condition to an unstable condition. Therefore the 

minimum eigenvalue can be used as a voltage stability index to detect voltage collapse. 

Due to the quasi-symmetric structure of JR, the eigenvalues and corresponding 

eigenvectors are expected to be real and very similar in value to the corresponding 

singular values and singular vectors. A study [27] has demonstrated that the minimum 

singular value and minimum eigenvalue basically provide similar information for static 

analysis of voltage collapse problems. These two indices are strongly non-linear to load 

change and do not provide much information about how close the system is to the 

marginally stable point nor of which buses are voltage critical until the system is very 

close to the marginal point. Although various improvements, such as the test function 

used in [28], have been proposed to reduce the computation costs, the matrix 

decomposition to calculate the minimum singular value and the minimum eigenvalue of 

the Jacobian matrix are still too computationally demanding for on-line applications. 

3.3.2 Sensitivity factors 

Sensitivity factors are reportedly used by utilities through the world as voltage 

stability indices to detect voltage instability because of their simplicity and computation 

efficiency [29]. Although eigenvalues and singular values are inadequate to detect 

proximity to static voltage collapse problems, they can provide theoretical proof of the 
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sensitivity factors. From Equations 3.17 and 3.18, we can get Equations 3.20 and 3.21, 

where rkφ  and rkγ  are the kth element of rφ and rγ  respectively.  
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The V-Q sensitivity factor will change its sign, which indicates an “unstable” 

voltage condition, as the minimum eigenvalue gets closer to zero and changes its sign as 

well. It also can be observed from the PV and/or VQ curve of each load bus that the V-P 

and V-Q sensitivity increases along the upper part of the nose curves as load demand 

increases and theoretically reaches infinity at the nose point, which is the marginally 

stable point and is often referred to as the saddle-node bifurcation by static voltage 

analysis. 

Q-V sensitivity factor based indices were proposed by [33,34]. Similarly, the ratio 

of the incremental change of reactive generation with respect to reactive demand and the 

change of system reactive power loss versus system voltage change were used as 

proximity indices to predict voltage instability in [29,35]. 

Sensitivity factor based indices are rather inexpensive to compute. This method 

can be implemented automatically in protection relays to initiate remedial actions, such 

as load shedding and capacitor bank switching, from the field to mitigate the voltage 

instability. However, these indices do not readily provide the distance to the marginally 

stable point and do not pinpoint the load areas that are more vulnerable to voltage 

collapse. Threshold settings for these indices-based remediation actions are difficult to 
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define. Operations of discrete control devices, such as LTC transformer and capacitor 

bank switching, can cause a discontinuity in these sensitivity indices and degrade their 

reliability. 

3.3.3 Existence of multiple power flow solutions 

There are two possible solutions to power flow equations under normal 

conditions, with one of these solutions corresponding to the true operational point of a 

power system. The number of existing solutions will change from 2 to 1 as the system 

operating point approaches the marginally stable point where only one solution exists. 

PV/QV curves can be used to illustrate this phenomenon, which is also confirmed in [36]. 

The authors in [36] further investigate the relationship between voltage instability and 

multiple load flow solutions by introducing a multilevel criterion, which consists of three 

criteria. A system is voltage stable if and only if all three criteria indicate voltage 

stability. Tamura et al. [37] used the pair of load flow solutions to calculate a voltage 

instability proximity index (VIPI). 

The main obstacle of the multiple solution based voltage stability indices is the 

computation of the low voltage solution and avoidance of the power flow divergence at 

the marginally stable point. Even though various improved methods have been proposed 

to compute the low voltage solutions, difficulties still exist, particularly for lightly loaded 

systems. Also, the computational demand of these indices is too high for on-line 

applications. 
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3.3.4 Load flow feasibility 

In [38], the authors propose a voltage stability index called the “L” indicator. The 

calculation of the “L” indicator is based on the general network equation as shown in 

Equation 3.22, where the buses are classified into two categories: generator bus and non-

generator bus. Equation 3.22 can be reformulated into Equation 3.23, where sub-matrix 

FLG is shown by Equation 3.24. An individual load bus “L” indicator is shown as 

Equation 3.25, where Gα is the number of generator buses, and system “L” indicator is 

shown as Equation 3.26 [38]. 
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The “L” indicator varies in the range between 0 (no-load of the system) and 1 

(voltage collapse). A simplified “L” indicator by neglecting the real part of Y matrix is 

presented in [39] and applications of the “L” indicator for load shedding to prevent 

voltage collapse are presented as well. 
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The “L” indicator derivation is based on the feasibility of the power flow of the 

individual load bus. It has been shown that voltage collapse point of a two-bus system 

predicted by the indicator coincides with the point where the Jacobian matrix of the 

power flow is singular [39]. The advantage of the “L” indicator method is that the index 

can be calculated very easily and requires only the system Y matrix information and 

generator bus voltages. In addition, the load bus with the largest “L” indicator is 

identified as the load bus that is the most vulnerable to the voltage collapse corresponding 

to the maximum “L” indicator  value. However, the “L” indicator output does not provide 

the distance to voltage collapse in a very “readable” format. As a result, the choice of 

threshold value of the indicator for initiating remedial actions is difficult to determine and 

is very subjective [39].  

3.3.5 Thevenin equivalent impedance 

Given a circuit as shown in Figure 3.3, circuit analysis shows that the load 

complex power is maximumized when | . The authors of [40,41] proposed a 

voltage stability index based on the ratio of the load equivalent impedance magnitude and 

the magnitude of the Thevenin equivalent impedance behind the load center. The voltage 

marginally stable point is declared when the ratio is equal to 1.  

||| lineload ZZ =

Zline

Zload
Vs

Iload

+

-

Vload

+
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Figure 3.3 Thevenin equivalent circuit 
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The method appears to be appealing because of the simplicity and feasibility for 

implementation in local protection devices. Normally the load impedance Zload can be 

easily calculated by dividing local measurements Vload with Iload. However, the remaining 

challenge is how to calculate accurately the Vequ and Zequ, which includes the line 

impedance and source impedance, behind the load bus. Methods including the recursive 

least squares (RLS) algorithm have been proposed to calculate the Thevenin equivalent 

impedance [41], but still need to be improved in terms of accuracy and speed. 

3.3.6 Load margin 

Load margin is the most straightforward and widely accepted index of voltage 

collapse as it provides the amount of additional load that causes a voltage collapse. The 

load margin is obtainable through different methods, such as direct methods, continuation 

power flow methods, methods based on multiple power flow solutions and optimization 

methods. The method called the Point of Collapse (PoC) calculates the voltage collapse 

points (saddle-node bifurcations) directly as a solution of the non-linear equation (2.18) 

for which the Jacobian matrix is singular and its right or left eigenvector is a nonzero 

vector. The modified Newton-Raphson based power flow, called continuation power flow 

[42], as introduced previously, can also be used to calculate the maximum loading point. 

Authors of [43] propose a new method to calculate the load margin based on the 

information of the pair of power flow solutions. The load margin is defined as the point 

on the loadability boundary within the minimum Euclidean distance of the node injection 

changes. Optimization methods are also proposed to find the load margin by defining the 
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maximum load increment as the objective function and the power flow equations and 

generator reactive limits are equality and inequality restraints, respectively [44]. 

The high computation cost is the most serious disadvantage of the load margin 

method as illustrated by [45]. Also, the load margin calculation requires the assumption 

of a direction of load increase, which is often not readily available. 

3.3.7 Voltage 

Voltage is probably the simplest and most intuitive index for quantifying voltage 

stability. System voltage has been widely used by utilities as an index to initiate remedial 

actions such as undervoltage load shedding, to prevent voltage collapse. Various voltage-

based load shedding schemes, including fixed time delay undervoltage and inverse time 

delay undervoltage load shedding, can be easily carried out by digital relays, which are 

broadly installed in the field without much additional cost [46,47]. Typically, voltage 

threshold is set between 85%-90% of the nominal voltage. The load to be curtailed is 

normally pre-selected as a fixed amount though simulations. Table 3.2 shows a three-

stage undervoltage load shedding scheme that has been used by the affiliated utility of the 

authors of [46]. 

Table 3.2 Under-voltage load shedding scheme example [46] 
 

 Voltage threshold (below 
lowest nominal voltage) Time Delay Amount of load 

to be shed 
Stage 1 10% 3.5 seconds 5% 
Stage 2 8% 5 seconds 5% 
Stage 3 8% 8 seconds 5% 
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The limitation of the voltage based index is that it cannot quantify the distance to 

the voltage marginally stable point. As the PV curve with negative power factor shown in 

Figure 3.2 illustrates, a power system with heavy reactive power compensation may not 

demonstrate significant voltage depression even if the power transfer is close to the 

system transmission limit and the system is close to the voltage marginally stable point. 

In addition, the bus with the lowest voltage is not necessarily the one closest to the 

voltage collapse point. Therefore, pre-selected undervoltage based load shedding is not 

the optimal voltage instability mitigation scheme, as it has the risk of over load shedding. 

3.3.8 Power system reactive power reserve 

Power system voltage collapse is usually accompanied by some reactive power 

generation devices, such as generators and SVCs, reaching their capacity limits.   High 

reactive power outputs and corresponding low reactive power reserve of the power 

system are sensitive indicators of voltage insecurity. On-line monitoring of reactive 

power consumption and reactive power reserves in the power system have been proposed 

as indices for voltage security assessment [48] and are being reportedly implemented at 

the BPA control center as described in [49,50].  Reactive power reserve is an intuitive 

index of the degree of system voltage security to system operators and can be used to 

identify the sub-region of the power system that is vulnerable for voltage collapse. 

In [50], the author states that it is difficult to set the threshold for preventive 

countermeasures properly based on system level reactive power reserve because the 

required reactive power reserve of a particular group of generators and SVCs depends on 
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the possible contingencies and system operation conditions. In addition, the instability 

phenomena must to slow enough so that operator’s action can be effective. 

3.4 Summary 

In this chapter, existing voltage stability assessment methods and some important 

VSIs are briefly summarized. Dynamic simulation of the power system responses to 

disturbances can reveal the voltage stability mechanism and demonstrate system stability 

with high confidence. However, the high computational demand of dynamic simulation 

based voltage stability assessment methods prohibits them from on-line applications. The 

majority of existing steady state voltage stability assessment methods and VSIs relate the 

voltage stability problem to the problem of solving the system power flow, which is a 

time-consuming, iterative process. These existing measurement based voltage stability 

indices, such as system voltage, are rough approximations of the voltage stability. They 

are unreliable to detect voltage marginally stable point and, therefore, may initiate 

remedial actions, such as load shedding, prematurely. 
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CHAPTER IV 
 

STATEMENT OF PROBLEM AND WORK PLAN 
 
 

4.1 Introduction 

As power systems are high order non-linear systems, completely modeling the 

power system and using dynamic simulation to predict the system voltage stability are 

impractical for on-line applications given the size of a typical power system and the time 

range the voltage stability problem involves. Fortunately, the power system voltage 

stability problem is closely related to the balance between the load demand and the 

maximum loading point of the system. Hence, significant research effort aimed to 

mitigate the power system voltage stability problem has been devoted to finding reliable 

and computation efficient VSIs that can be used to initiate proper remedial actions to 

prevent voltage collapse. The existing VSIs can be broadly classified into two categories, 

namely power flow related indices and direct measurement based indices, as shown in 

Figure 4.1. 

4.2 Limitation of existing indices 

4.2.1 Power flow related indices 

Power flow calculations are widely used by modern Energy Management Systems 

(EMS) application functions such as contingency analysis. State estimation functions

 53 
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constitute the core of the EMS functions as it acts like a data filter between the raw 

measurements received from the Supervisory Control and Data Acquisition (SCADA)  

 

 

Figure 4.1 Voltage stability indices classification 
 

  

system and all the application functions that require accurate data of the current state of 

the system. Traditional state estimation functions are based on iterative nonlinear 

estimation methods, such as the Weighted Least Squares (WLS) method, to obtain the 

system state variables, voltage phasors, and other system variables, such as load demands 

[51,52,53,54]. Because of the time skew in these measurement processes and the time 

(normally a few minutes) for estimation algorithms to converge, the analysis functions 

available from the EMS system have been largely restricted to steady-state phenomena. 

The limitation of these power flow based indices are summarized as follows: 
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� Conventional power flow based indices rely on a centralized EMS system, 

particularly the state estimator, which may be too slow to detect short-term 

and middle-term voltage instability phenomena.  

� System modeling is largely limited to static models. Important factors, such as 

the generator field current limiter and the load dynamic reaction to low 

voltage, contributing to the voltage stability may not be sufficiently 

represented or may be neglected.  

� Most of the power flow based indices proposed to date are computationally 

intensive, which is one of the major obstacles that prevents them from being 

used on-line.  

� System operators, who mainly rely on EMS security analysis, may not have 

enough time to combat voltage instability effectively under stress conditions 

as too much information may be given by the EMS system. 

4.2.2 Direct measurement based indices 

Contrary to centralized EMS based voltage stability indices, direct measurement 

based VSIs can be implemented in protection devices to provide early detection of the 

voltage instability and prevent it from spreading system wide. The limitations of these 

existing direct measurement based VSIs are summarized as follows: 

� Most direct measurement based VSIs do not accurately quantify the 

distance to the marginally stable point. Therefore, remedial actions, such 

as load shedding, initiated by these VSIs may be premature and may not 

meet the requirements of current utility practices.  
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� Threshold values for these VSIs are difficult to determine to initiate proper 

remedial actions. Numerous off-line simulations are normally required to 

determine the location of these measurements and the threshold values for 

these VSIs. 

4.3 Synchronized phasor measurement 

Recent successful commercialization of synchronized phasor measurement 

technology accompanied by high-speed communication networks has provided a new 

platform for developing new power system monitoring and control schemes. 

“Synchrophasor” or “synchronized phasor” refers to the phasor, a complex number in 

polar format, calculated from data samples using a standard time signal as the reference 

for the sampling process. With the standard time signal, the phasors from remote sites 

have a defined common phasor relationship [55]. The device that provides synchronized 

phasor measurement is usually called a Phasor Measurement Unit (PMU). A PMU is not 

necessarily a special device. Now, more and more digital relays also provide 

synchronized phasor measurements, especially in transmission or sub-transmission 

networks. Figure 4.2 illustrates a general structure of a PMU. The common time source 

for synchronization is from a Global Positioning System (GPS) receiver, which can 

decode time synchronized to within 0.2 µs of Greenwich Mean Time (GMT), the world 

time standard [55]. PMUs and high-speed communication networks compose the wide 

area measurement system that brings the direct measurements of power system state 

variables together almost in real time and are able to measure the dynamics of the power 

system. Several WAMSs are being installed on a trial basis throughout the world. Some 
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advanced wider area protection and control applications have been developed based on 

these WAMSs to improve the power system stability [5]. 

 

 

Figure 4.2 General structure of PMU [6] 
 

4.4 Motivation 

Power system voltage stability problems have been well recognized and much 

work has been done to date on the development of effective off-line voltage stability 

analysis methods and tools to mitigate the potential voltage instability at the stage of 

system design and operations planning. However, many utilities are still limited to 

performing off-line studies to determine the voltage stability margins and necessary 

control actions to maintain the stability of systems based on the analysis of only a small 

number of operational conditions and contingencies. These developed voltage stability 

analysis methods, based on the traditional EMS system, have an inherent limitation in 

speed and static modeling and, therefore, have not been reportedly used for any 

successful on-line application. On the other hand, applying automatic under-voltage load 

shedding to prevent voltage collapse is being adopted by more utilities today, as it can be 
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easily implemented through digital relays and the decision is made based on the local 

information. A reliable and optimal VSI, other than voltage, suitable for on-line 

application is of great value and is still attracting great interest from the power 

engineering community. Since these synchronized phasor measurements are available, 

this research work is directed towards developing an improved on-line VSI that not only 

can reliably detect the system marginally stable point but also is computationally efficient 

for on-line applications.  

4.5 Work plan 

In order to reduce the voltage stability assessment problem to a manageable issue, 

this work narrowly focuses on the root cause of the voltage instability. That is, voltage 

collapse starts when the load power demands surpass the maximum power that can be 

generated and transferred to the load center. Voltage instability could also originate as a 

local phenomenon and then become a system level problem if countermeasures are not 

taken early enough to contain the problem in that area. This research starts with a 

derivation of the maximum transferable power of a simple power system. The fact that 

the maximum transferable active power and reactive power are mutually exclusive and 

that the load factor affects the maximum transferable power will be taken into 

consideration. Once the maximum transferable power is obtained, a VSI has been devised 

based on the load margin that is the difference between the maximum transferable power 

and the load power consumption measurement. To apply the VSI on a large power 

system, the large complex network behind a load bus will be first simplified into a single 

source and single line model. The simplified model should preserve the power flow 
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results and voltages of the load bus, as the power balance is a key issue of analysis for 

voltage stability. Then the VSI of each load bus can be calculated based on the 

corresponding simplified single source system model. The VSI of the load bus that has 

the minimum load margin will be chosen as the VSI of the system. Three common test 

cases will be used to validate the devised VSI.  

The next chapter provides details on the derivation of the VSI. Chapter VI 

includes validation of the VSI with the BPA 10-bus, IEEE 30-bus, and CIGRE 32-bus 

test cases.  
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CHAPTER V 
 

IMPROVED VOLTAGE STABILITY INDEX DEVELOPMENT 
 
 

5.1 Introduction 

The voltage stability problem normally starts as a local phenomenon and then 

becomes a system level problem if no countermeasures are taken. Preventing the system 

voltage at every load center from passing the marginally stable point is an effective and 

economical measure to prevent voltage collapse. As shown in Chapter 2, the power 

system voltage stability problem is tightly coupled with the power system load demand 

problem. More specifically the power system voltage marginally stable point, in most 

cases, coincides with the maximum deliverable power by the generation and transmission 

system. To most utilities today, the maximum deliverable power is often limited by the 

maximum transferable power capacity of the transmission networks, especially under 

contingency situations. Hence, obtaining the maximum deliverable power to each load 

center is equal to finding the voltage marginally stable point. 

The derivation of the improved VSI starts with a simple system model and then is 

extended to a generic large power system model. Finally, some practical issues related to 

the implementation of the VSI are discussed.  
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5.2 Voltage stability index for simple power system 

5.2.1 Maximum transferable power through a transmission line 

Given a simplified power system model as shown in Figure 5.1, the source with 

voltage magnitude Vs supplies a remote load through one transmission line with line 

impedance as . Knowing the receiver voltage magnitude, VjXRZ += r, and the phasor 

angle difference, δ, between the source voltage and load voltage, the complex power, S, 

received at the load end can be expressed by Equation 5.1. Equations 5.2 and 5.3 show 

the active power P and reactive power Q, respectively. Combining Equations 5.2 and 5.3 

by eliminating δ  and rearranging the results, we can get a second-order equation with 

respect to the receiver voltage magnitude, V , as shown by Equation 5.4. Equation 5.5 

expresses the numerical solution of the V

2
r

r, which is a function of Vs, P, Q, R and X. As 

the receiver voltage magnitude, Vr, is a physical quantity, there must always be a 

solution. That means the part under the second square root in the Equation 5.5 should not 

be less than zero, as shown by Inequality 5.6. 

 

 
 

Figure 5.1 Single line power system model 
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When the left part of the Inequality 5.6 equals zero, there is only one possible 

solution of Vs and the system voltage is at the marginally stable point, as the load demand 

has reached the maximum transferable complex power, Smax, through this transmission 

line given the source voltage magnitude Vs. Further attempts to increase the load demand 

draws the receiver voltage Vr from the high value to the low value as the voltage starts to 

collapse.  From Inequality 5.6, the range of P and Q with respect to each other can be 

obtained as shown by Inequalities 5.7 and 5.8, where 22 XRZ += . Since we are 

interested in the power flow direction from the source to the load, the maximum 

transferable active power Pmax through that line can be expressed by Equation 5.9. 

Similarly, the maximum transferable reactive power Qmax is expressed by Equation 5.10. 

If the load is maintained as a constant power factor with the power angle )(
P
Qanat=θ , 

the maximum transferable complex power Smax can be expressed by Equation 5.11. For 
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transmission lines with a high ratio of X/R, the approximate Pmax, Qmax and Smax can be 

expressed in Equations 5.12 – 5.14 by neglecting the line resistance R. 
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We observe from Equations 5.9 – 5.14 that Pmax and Qmax increase as the source 

voltage magnitude, Vs, increases or the line impedance, Z, decreases. Also Pmax decreases 

as Q increases, as illustrated by Figure 5.2. Similarly, Qmax decreases as P increases, as 

illustrated in Figure 5.3. Figure 5.4 illustrates that the maximum transferable complex 

power, Smax, increase as the power factor, )cos(θα = , increases. 
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Figure 5.2 Maximum transferable active power Pmax vs. reactive power Q 
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Figure 5.3 Maximum transferable reactive power Qmax vs. active power P 
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Figure 5.4 Maximum transferable complex power Smax vs. load power factor α 
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5.2.2 Load margins of the single line system 

Load margin refers to the amount of additional load (complex power) demand that 

would cause the power system voltage to reach the marginally stable point, as the power 

system voltage stability problem stems from the load demand surpassing the maximum 

power that can be generated and transferred to the load center. The system voltage 

stability security is proportional to the load margin. A popular approach in the power 

industry to determine the steady state maximum load point is the repetitive power flow 

calculation by increasing load with respect to a given load increase pattern. The load that 

causes the power flow calculation not to converge is claimed to be the maximum load. As 

can be seen from Section 5.2.1, the maximum transferable complex power and, therefore, 

the load margin depend on the aggregated system load characteristics, such as the power 

factor, which are difficult to predict because of the dynamic nature of the aggregated 

system load reacting to a voltage variation. For example induction motors may stall at 

low voltage and draw significant reactive power as compared to their rated reactive 

power. Therefore the steady state calculated load margin is unsuitable of on-line 

applications, especially when the system voltage is abnormal. Alternatively, three load 

margins that are suitable for on-line applications are proposed here and shown by 

Equations 5.15 – 5.17, where Pmax, Qmax, and Smax are shown in Equations 5.9 – 5.11. The 

P, Q, and S are the present power demand of the load. The calculated, Pmargin, is based on 

the assumption that the reactive power demand, Q, is constant. Similarly the calculated 

Qmargin is based on the assumption that the active power demand, P, is constant. The 

calculated Smargin is based on the assumption that the present load power factor is 
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preserved as the load increases. An additional assumption is that the source voltage 

magnitude is maintained as a constant. The calculated Pmargin and Qmargin are relatively 

overly optimistic because normally the active power and reactive power demand increase 

simultaneously. In spite of these assumptions, these three load margins predict the 

distance from the current load demand to the maximum load demand that may cause the 

voltage collapse in a meaningful and interpretable way. Also the three load margins will 

become zero simultaneously as the load demand reaches the maximum load demand and 

the system voltage approaches the marginally stable point. The proposed load margin 

calculation method can be applied to an individual load bus and its computation 

efficiency makes it suitable for on-line applications. 

PPP axmrginma −=  (5.15) 

QQQ axmrginma −=  (5.16) 

SSS axmrginma −=  (5.17) 

 

Example 5.1 

Given the line parameter of the simplified power system model shown in Figure 

5.1  and the V , the load power factor, α, evenly 

decreases from 0.95 to 0.80 in 10 seconds together with the complex power, S, evenly 

increasing from 0 pu to the maximum transferable complex power, S , 

corresponding to 

pujZ 101.0012.0 +=

8.0=

pus 0.1=

puaxm 746.1=

α . 
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Figures 5.5 –5.7 demonstrate that the calculated Pmax, Qmax and Smax merge with 

the corresponding load demand P, Q and S simultaneously at the voltage marginally 

stable point as shown in Figure 5.8, in which the upper part (solid line) represents the real 

load voltage and the lower part (dashed line) represents the other possible voltage 

solution. Figure 5.9 shows the three load margins, which decrease as the load demand 

increases and become zero when the load demand reaches the maximum transferable 

load. 

 

 

Figure 5.5 Predicted Pmax vs. P for system in Example 5.1 
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Figure 5.6 Predicted Qmax vs. Q for system in Example 5.1 
 
 

 
Figure 5.7 Predicted Smax vs. S for system in Example 5.1 
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Figure 5.8 Possible load voltage Vr for the system in Example 5.1 
 
 

 
Figure 5.9 Three predicted load margins of the system in Example 5.1 
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5.2.3 Voltage stability indices of single line system 

With the calculated load margins and the measurements of the current load 

demand, three voltage stability indices can be devised as shown in Equations 5.18 – 5.20. 

All three voltage stability indices range between 0 and 1. They decrease to 0 as the load 

demand increases to the maximum transferable power. Among the three voltage stability 

indices, the complex power based VSIS is the minimum point where the load demand is 

inductive. Figure 5.10 shows the three voltage stability indices of Example 5.1. The 

voltage stability index of the single line system is defined as 

{ }SQP VSIVSIVSInmiVSI ,,= . 

axm

rginma
P P

P
VSI =  (5.18) 

axm

rginma
Q Q

Q
VSI =  (5.19) 

axm

rginma
S S

S
VSI =  (5.20) 

 

Figure 5.10 Voltage stability indices for the system in Example 5.1  
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5.3 Voltage stability index of a large power system 

5.3.1 Power system partition 

Electric power systems are interconnected together as the resulting larger system 

has better regulating characteristics. A disturbance happening to any of the subsystems is 

assimilated by the entire interconnected system and, therefore, the impact of the 

disturbance is mitigated. Nevertheless, the operational management and network analysis 

of the entire interconnected power system is a formidable task. Normally the 

interconnected power system is partitioned into three subsystems: the internal system 

(system of interest), the boundary system (buffer system), and the external system as 

illustrated by Figure 5.11. 

 

 

Figure 5.11 Interconnected power system 
 
 

The boundary system is selected so that the external system is electrically 

separated from the internal system and the mutual impact between the internal system 

and external system is insignificant. The detailed model of the boundary system has to be 
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maintained as it has a significant impact on the internal system. The boundary system can 

be properly established through off-line contingency analysis or sensitivity analysis [56]. 

Normally, long EHV transmission lines connecting two areas serve as good candidates 

for the boundary system. With the designated boundary system, the external system can 

be largely unobservable and its structure need not be maintained and, therefore, can be 

represented by an equivalent system connected to the buses of the boundary system. 

Figure 5.12 illustrates the equivalent power system based on the extended Ward method, 

which substitutes the external system with artificial shunt branches and voltage sources 

attached to these boundary buses. A simpler representation of the external system is 

modeling the boundary buses as PV buses with power injection equal to the real-time 

measurement, as shown in Figure 5.13. This approach is similar to modeling a power 

flow slack bus, which is modeled as a PV bus with infinite generation capacity in 

conventional power flow analysis. 

 

Figure 5.12  Equivalent interconnected power system (extended Ward method) 
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Figure 5.13 Equivalent interconnected power system (PV bus) 
 

In fact, the difference between these two equivalent methods will not affect the 

results of the proposed VSI, is shown in the next section, where the shunt branches 

connected to these boundary buses are not part of the calculation. Therefore, these 

boundary buses are simply modeled as PV buses in this proposed voltage stability 

assessment method. 

5.3.2 Power system network simplification  

For a generic multi-bus power system, the current injection to each bus can be 

calculated by solving Equation 5.21, where Vsys is the complex bus voltage vector, Ysys is 

the system network admittance matrix, and Isys is the complex bus current injection 

vector. 

syssyssys VYI ⋅=  (5.21) 

All the power system buses can be classified into three categories: 1) load bus, 2) 

tie bus, and 3) source bus. Load bus refers to the bus with any load attached. Tie bus 

refers to the bus with no load or any power generation device attached. Source bus 
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includes the generator bus, whose voltage is regulated by the attached generator, and the 

boundary bus, which is modeled as a PV bus. A source bus becomes a load bus if its 

attached generator reaches its capacity limit and loses its voltage regulation capability. 

By reordering Equation 5.21 based on the bus type, Equation 5.22 can be obtained.  
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By using the current injection of the load bus and tie bus and the voltage of the 

source bus, Equation 5.23 can be used to solve the voltage of the load bus and the tie bus 

and the current injection of the source bus.  
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where 

11 )( −− ⋅⋅−= TLTTLTLLLL YYYYZ  (5.24) 

1−⋅⋅−= TTLTLLLT YYZZ  (5.25) 

)( 1
LGTGTTLTLLLG YYYYZH −⋅⋅⋅= −  (5.26) 

11 )( −− ⋅⋅−= LTLLTLTTTT YYYYZ  (5.27) 

1−⋅⋅−= LLTLTTTL YYZZ  (5.28) 

)( 1
LGLLTLTGTTTG YYYYZH ⋅⋅−⋅= −  (5.29) 

TLGTLLGLGL YYZYA ⋅+⋅=  (5.30) 

TTGTLTGTGT ZYZYA ⋅+⋅=  (5.31) 
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GGTGGTLGGLGG YHYHYK +⋅+⋅=  (5.32) 

As with the tie bus with zero current injection, the voltage of the load bus can be 

expressed by Equation 5.33. 

GLGLLLL VHIZV ⋅+⋅=  (5.33) 

It is worth noting that the reference direction of these currents shown in Equation 

5.23 is flowing towards the network. For the load bus, the load power direction is 

normally referred to as flowing out of the network. Therefore, the injection current to the 

ith load bus can be expressed by Equation 5.34, where the complex power, Si, is flowing 

out of the network and * stands for the conjugate operator. 

∗
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Replacing the Ii in Equation 5.34, we can get Equations 5.35 and 5.36. Equation 

5.35 calculates the voltage of the jth load bus, where N is the number of load buses and M 

is the number of source buses. By rearranging Equation 5.36, we get Equation 5.37, 

which matches the power flow calculation of the single source power system as shown in 

Figure 5.14. The Vequ and Zequ of Figure 5.14 are shown by Equations 5.38 and 5.39.  
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Figure 5.14 Derived equivalent single source power system 
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jjLLjequ ZZ =  (5.39) 

The load power and load voltage of the original large power system are preserved 

in the derived equivalent circuit. Therefore, we can analyze the voltage stability based on 

this equivalent circuit, as the load power and load voltage are the two most important 

factors affecting the voltage stability. The following observations can be made from this 

derived equivalent circuit: 

� The equivalent voltage source, Vequ, is a function of the true voltage 

sources and other system loads. 

� The magnitude of the equivalent voltage source decreases as other system 

loads increase. 
  



www.manaraa.com

    77
� The equivalent impedance, Zequ, only depends on the system topology and 

line characteristics. To a power system with a fixed topology, the 

equivalent impedance remains constant. 

Example 5.2 

A simple three-bus power system, as shown in Figure 5.15, is used to illustrate the 

network simplification procedure. The network equation of this power system can be 

expressed by Equation 5.E.1. The calculated ZLL and HLG are given by Equation 5.E.2 and 

5.E.3 respectively. The corresponding Vequ and Zequ of the three-bus power system are 

given by Equations 5.E.4 and 5.E.5, respectively. 

 

 

Figure 5.15 A three-bus power system of Example 5.2  
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5.3.3 Large margin and VSI of a large power system  

After obtaining the derived equivalent single source circuit of the jth load bus, as 

shown in Figure 5.15, Equations 5.9 – 5.17 can be used to calculate the load margin of 

this load bus. Similarly, Equations 5.40 – 5.43 show the calculated load margin of this 

load bus, where V and are shown in Equations 5.38 and 5.39, R
jequ jequZ j and Xj are the 

real part and the imaginary part of the  respectively, and P
jequZ j, Qj and θj are the jth load 

characteristics.   
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Accordingly, the VSI of each individual load bus is defined as shown by Equation 

5.43. The VSI of the overall system is defined as Equation 5.44, where L is the number of 

load buses. 
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As voltage instability normally starts from local areas, different load buses may 

have different VSI values. The load bus with the minimum VSI has the smallest load 
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margin and is the closest to the voltage marginally stable point. Also the voltage stability 

margins of system load buses are mutually dependent as shown in Equation 5.39. The 

load increment at any load bus decreases the load margins of its neighboring load buses. 

5.4 Measurement requirements for the proposed VSI 

To apply the proposed VSI, the power system needs to be properly partitioned 

into the internal system, the boundary system, and the external system. Based on 

Equation 5.38 and 5.39, the time-synchronized measurements required by the proposed 

algorithm are summarized as follows: 

� Voltage phasor of boundary buses, internal system generator buses, and 

internal system load buses 

� Complex power or injection current of load buses and buses with 

generator connected (the complex power can be calculated by knowing the 

bus voltage and injection current) and 

� Status of the devices, such as circuit breaker and capacitor bank, which are 

included as a part of the network model. 

5.5  Practical implementation of the VSI  

To implement the proposed VSI, the system network model (for example the 

network admittance matrix) of the internal system and the boundary system has to be 

made available in addition to these required time-synchronized measurements. If any 

time-synchronized device status measurement changes, the network model should be 

updated accordingly. For example, the line tripping indicated by the open status of its 
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circuit breakers requires the corresponding line admittance to be removed from the 

network admittance matrix. If the shunt capacitor bank is not modeled as a load whose 

power is measured, the switching on or off of the shunt capacitor bank requires the fixed 

admittance of the capacitor bank to be added to or removed from the network admittance 

network, respectively. If an ULTC transformer is modeled as part of the network model 

instead of being modeled as a part of an aggregated load, its tap change position has to be 

measured and used to update the corresponding network admittance elements.  

The type of bus to which a generator is attached changes from a source bus to a 

load bus when the attached generator reaches its capacitor limit and loses its capability of 

voltage regulation. Detection of a generator reaching its capacitance limit can be 

achieved either through an indication signal sent from the generator OXL or by detecting 

its terminal voltage below the voltage regulation setting. A change of bus type triggers an 

update of the ZLL and HLG matrices. Figure 5.16 illustrates the functional diagram of the 

proposed VSI implementation.  

5.6 Summary 

In this chapter, the algorithm derivation of the proposed VSI was presented. It 

started with deriving the VSI of a simple power system taking the load power factor into 

consideration. Then a method of simplifying the large network behind a single load bus 

into a single voltage source and a single line was presented. With the simplified model, 

the VSI of the load bus can be directly calculated. Finally the data requirements and 

function procedure diagram was presented. 
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Figure 5.16 Functional diagram of the proposed VSI implementation 
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CHAPTER VI 
 

PROPOSED VSI APPLICATION IN POWER SYSTEMS 
 
 

6.1 Introduction 

In Chapter 5, a new voltage stability index (VSI) based on the predicted load 

margin of each load bus has been proposed, and the result of applying the VSI on a 

simple two-bus power system model has been demonstrated. In this chapter, the proposed 

VSI will be examined on three widely tested power system models with larger sizes: the 

BPA 10-bus system, the IEEE 30-bus system [57], and the CIGRE 32-bus system [16]. 

The BPA 10-bus system will be studied through both steady state power flow analysis 

and time based dynamic simulation. The IEEE 30-bus system and the IEEE 118-bus 

system are studied only through steady state power flow analysis as the data required by 

the dynamic simulation are not readily available. The steady state power flow analysis is 

conducted by two software packages: PowerWorld Simulator and Power System 

Simulator for Engineering (PSS/E). The Power Systems CAD (PSCAD) simulation 

package, which is based on the well tested EMTDC solution engines, is used to carry out 

the time based dynamic simulation. The VSI functions are implemented in MATLAB m-

files. The data exchange routine between the simulation packages and the MATLAB m-

files were developed. The details about each test case and the test results are presented in 

each section. 

 82 
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6.2 BPA 10-bus test system 

The BPA 10-bus test system, as shown in Figure 6.1, is originally described in 

[46] and is named as the BPA test system because it was constructed based on a part of 

the Bonneville Power Administration (BPA) power system. The test case with small 

variations has been broadly used to demonstrate and analyze the various aspects of 

voltage instability [2,4].  

 

 

Figure 6.1 BPA 10-bus test system one-line diagram [2] 
 
 

In this test system, two generators supply approximately 5000 MW to the load 

area, which consists of one aggregated industrial load and one aggregated residential 

load, through five 500-kV transmission lines. The load area has a generator, Gen 3, 

supplying a part of the load demand and regulating the load area voltage under normal 

conditions. The load area is heavily var-compensated by three large shunt capacitor 

banks. The capacity limits of the three generators are listed in Tab. 6.1. The industrial 

load is modeled as a constant power load. Fifty percent of the residential load is a 
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constant current load and the other fifty percent is a constant impedance load. The 

residential load is served by a ULTC transformer, which automatically regulates the low 

side voltage through changing the tap position at the high voltage side. The major cause 

of the voltage collapse is the outage of one 500-kV transmission line, followed by the 

ULTC operations to restore the residential load voltage. 

Table 6.1 Generator capacity limits of the BPA 10-bus system 
 

 Generator 1 Generator 2 Generator 3 
Maximum MW 5000 2200 1600 
Maximum MVar 2000 700 400 

 
 

6.2.2 Steady state power flow analysis 

The PowerWorld Simulator is used to carry out the steady state power flow 

analysis of this test case. As indicated by the term steady state, the results obtained are 

not a function of time. The line outage and ULTC tap changes are inputted manually. 

After each operation, the power flow algorithm is run to obtain the power flow results, 

including the bus voltage phasors. Then the power system admittance matrix and bus 

voltages are outputted to the VSI function, which is coded in MATLAB m-files, to obtain 

the voltage stability index of each load bus. Table 6.2 lists the bus voltages magnitudes in 

per unit before and after line outage. Before the line outage, the ULTC tap change 

position is at 0.95626 and no generator has reached its capacity limit. After the line 

outage, the generator Gen 3 reaches its capacity limit and loses its voltage regulation 

capability. Therefore, its terminal voltage (Bus 3) drifts below its voltage regulation 

setting, as shown in Tab. 6.2. Meanwhile, the residential load (Bus 10) voltage is below 
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its minimum voltage setting and, as a result, the ULTC starts to decrease its tap position 

at the primary side with a step size of 0.00626 to boost its secondary side voltage to the 

range of 0.99 to 1.01 pu. The generator, Gen 2, reaches its capacity limit when the ULTC 

tap position reaches the position of 0.91250. After changing the UTLC transformer tap 

position from 0.90625 to 0.9000, the power flow fails to converge and the system reaches 

its maximum loading point as well as the voltage marginally stable point. The results of 

the proposed VSI corresponding to system operation condition change are listed in Tab. 

6.3. Assuming one of the 500kV transmission lines is opened after 5 seconds and the 

ULTC operation time delay is five seconds, the results of the VSI and ULTC tap position 

as functions of time are plotted in Figure 6.2. Fig 6.3 shows the voltage magnitudes of 

bus 6, load bus 7, and load bus 10.  Bus 10 voltage is maintained relatively stable due to 

the ULTC operation during the process. 

Table 6.2 BPA test system bus voltages in p.u. (before and after line outage) 
 
Bus # 1 2 3 4 5 6 7 8 9 10 
Before  0.980 0.965 0.972 1.096 1.088 1.070 1.000 0.999 0.957 1.000 
After 0.980 0.965 0.950 1.092 1.073 1.031 0.959 0.962 0.921 0.960 

 
 

Based on the results shown in Tab. 6.3, we can observe that the proposed VSI is 

able to detect accurately the voltage instability. After 40 seconds, the VSIs of both load 

buses become very close to zero, which indicates the system is approaching the 

marginally stable point. After one more tap change operation of the UTLC transformer at 

45 seconds, any further attempt to restore the load through ULTC tap change operation 

  



www.manaraa.com

    86
causes the power system voltage collapse, which is indicated by the power flow failure to 

converge. 

Table 6.3 VSI outputs of the BPA test system based on steady state analysis 
 

Proposed VSI  
Bus 7 Bus 10 

Before Line Outage 0.4285  0.3484  
After Line Outage 0.0646  0.0775  

0.95000  0.0613  0.0733  
0.94375  0.0581  0.0692  
0.93750  0.0547  0.0652  
0.93125  0.0513  0.0611  
0.92500  0.0479  0.0571  
0.91875  0.0444  0.0532  
0.91250  0.0007  0.0001  
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Figure 6.2 Proposed VSI of the BPA test system (from steady state analysis) 
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Figure 6.3 Bus voltages of BPA test system (from steady state analysis) 
 
 

6.2.3 Time based dynamic simulation 

The BPA test system is modeled in PSCAD with the same transmission line and 

transformer parameters as used in the steady state power flow analysis. Typical 

synchronous generator parameters and standard static excitation systems, which are not 

modeled by the steady state power flow algorithm, are used to fulfill the requirements of 

time-based simulation. The excitation overcurrent limits are tuned to enforce the reactive 

power generation limits of Gen 2 and Gen 3 approximately as listed in Table 6.1. Voltage 

stability assessment related functions, as illustrated in Figure 5.16, are implemented in 

MATLAB m-files. An interface has been developed to facilitate the dynamic data 
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exchange between the PSCAD and the m-files at every simulation time step. The line is 

also opened after 5 seconds and the UTLC tap change operates with 5 seconds of delay. 

Figure 6.4 shows the load margin and the VSI of the load bus 7. Pmax, Qmax, and 

Smax are the three predicted maximum power demands. The P, Q, and S are the real-time 

measurements of the three corresponding load consumptions. These three predicted 

maximum power demands shrink notably when one of the five transmission lines opens 

at 5 seconds, and simultaneously merges with the respective power consumption at 

around 40 seconds when the system reaches the marginally stable point. The 

corresponding VSI is shown in the fourth plot of Figure 6.4. As the reactive power 

demand of this load bus is positive, the VSI based on the complex power remains as the 

minimum and, therefore, becomes the VSI of the load bus. Similarly, Figure 6.5 shows 

the load margin and VSI of the load bus 10. The VSIs of the two load buses and the 

ULTC transformer tap position are shown in Figure 6.6. Figure 6.7 shows the voltages of 

Bus 6, Bus 7, and Bus 10. As observed from Figure 6.7, the voltages of both buses drop 

dramatically at 50 seconds, which clearly indicates a voltage collapse.  

Comparing the results shown in Figure 6.6 and Figure 6.10 shows that the results 

obtained from time-based dynamic simulations match very closely to the results obtained 

from the steady state analysis. Results from both analysis methods show that the 

proposed VSI can identify the voltage marginally stable point of each load bus and can 

provide the stability margin in a readable format.  
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Figure 6.5 Load bus 10 load margin and VSI (from dynamic simulation) 
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Figure 6.6 VSI of the BPA ten-bus system (from dynamic simulation) 
 
 

0 5 10 15 20 25 30 35 40 45 50
0.6

0.7

0.8

0.9

1

1.1

t in seconds

B
us

 v
ol

ta
ge

 in
 p

u

Bus 6
Bus 7
Bus 10

 
Figure 6.7 Bus voltages of BPA ten-bus system (from dynamic simulation)
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6.3 IEEE 30-bus test system 

The IEEE 30-bus test case is one of the widely used test cases available from the 

power system test case archive [57]. Figure 6.8 shows the one line diagram of the power 

system. The system mainly consists of two parts: a 33kV system and a 132kV system. 

The system reactive power support is largely from synchronous condensors. The 33kV 

system is heavily loaded and has loads attached at most of the buses. Under the normal 

conditions, as specified by the original test case data, bus 30 has the lowest voltage as it 

is farthest away from the source. The VSI application on this test case is conducted only 

through the steady state analysis, because the model information required by dynamic 

information is not available. Two types of tests are conducted to verify the applicability 

of the proposed VSI. First, the load of a bus that is not the most distant load bus from the 

source is increased until the power flow diverges. The second test is to increase 

simultaneously all the loads in steps of a fixed percentage of their respective initial load 

values with constant power factors maintained until the power flow diverges.  Tab. 6.4 

lists five load buses with the minimum VSI under the initial conditions. The system its 

under initial conditions is clearly distant from the voltage collapse, as the minimum VSI 

(0.7769) is much larger than 0 (voltage stability limit). 

Table 6.4 Five load buses with the minimum VSI under the initial condition 
 

Bus Number 30 26 21 24 19 
VSI Output 0.7769 0.8769 0.8871 0.9106 0.9136 
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Figure 6.8 IEEE 30-bus test system one-line diagram [57] 

 
 

6.3.2 Increase an individual load  

The load at bus 10 is chosen to be increased as bus 10 is not among the buses with 

the minimum VSIs under the initial condition and it is not the most ‘electrically’ distant 

bus from the source. The VSIs of bus 10 and five other buses with the minimum VSIs 

under the initial conditions, as listed in Tab. 6.4, are plotted in Figure 6.9 as the complex 

power of the load at bus 10 ranges from zero to its maximum loading point with load 

factor as 0.945. From Figure 6.9 we can observe that the proposed VSI not only 

accurately detects the voltage marginally stable point of each individual load bus, but also 

correctly identifies the load bus that has the minimum load margin and is the most 

vulnerable to voltage collapse.  
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Figure 6.10 shows the predicted maximum complex power loading point of bus 

10 and the power consumption of bus 10. It can be observed that the initially predicted 

maximum complex power loading point, which is around 140 MVA, for load bus 10 is 

close to its final maximum load consumption (125MVA), causing the system to reach its 

voltage marginally stable point.  
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Figure 6.10 Predicted Smax of load bus 10 
 

6.3.3 Increase all loads simultaneously 

The system overall load under the initial condition is 283.40 MW for the active 

power and 126.20 MVar for the reactive power. All the loads are increased by the same 

scale factor with their own power factors maintained as constants. The power flow fails 

to converge as the system’s overall load reaches 175% of the initial load. Figure 6.11 

plots the five load buses with minimum VSIs (closest to the marginally stable point) 

when the power flow diverges. The proposed VSI identifies the load bus 30 as the most 

vulnerable load bus to voltage collapse. Figure 6.13 shows the predicted maximum 

complex power loading point, which decreases as other loads increases, and the complex 

power consumption of bus 30. 
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Figure 6.11 The five buses with the minimum VSIs (loads increased evenly) 
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6.4 CIGRE 32-bus test system 

The 32-bus test system, as shown in Figure 6.13, is actually based on northern 

Belgium’s power system, which experienced a voltage collapse in 1982. The test system 

mainly consists of three layers with different voltage levels. The interconnected 380kV 

layer, including equivalent external systems, has the generators that supply most of the 

power. The 150kV system has three connected generators, which deliver constant power 

(PQ bus) and have no voltage regulation capability under the initial conditions. The 

internal system loads connected to buses N201 through N207 at 70kV are fed from 

ULTC transformers connected to the 150kV system. The test system was first presented 

in a CIGRE’s report [29] and later was used by other researchers[16]. The series of 

events that drove the system to collapse are summarized as the following [16,29]. 

� At 30 second, all the internal system loads start to increase steadily at the 

rate of 30% in 7200s with a constant ratio between P and Q. All other 

loads remain unchanged. 

� The line connecting buses N16 and N3 is tripped at 5000s. The system is 

assumed to remain stable successfully after the event. 

� The internal system load stops increasing at 7230s. 

� Machine M2 is tripped off the system at 7400s, which causes the system 

voltage to collapse rapidly. 

Steady state power flow calculations are used to conduct the simulation. The 

internal system loads are increased at a fixed step of 2.5%, which corresponds to 600 

  



www.manaraa.com

    98
seconds of load incremental time. The line is tripped when the system load reaches 

120.71%, which corresponds to 5000 s. 
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Figure 6.13 CIGRE 32-bus test system one-line diagram 
 
 

Figure 6.14 shows the VSIs of the power system and two load buses (N201 and 

N207), which have the two minimum VSIs among the seven load buses of the internal 

system, before the machine M2 is tripped off at 7400s. It can be observed that the system 

VSI is already below 0.25, which indicates a small load margin exists, before the major 

generator M2 is tripped off. As one of the limitations of the power flow based steady 

state analysis, the power flow calculation does not converge at severe events that cause 
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system voltage collapse. In this case, the power flow solution as well as the VSI cannot 

be obtained as the power flow calculation diverges at the event of Machine M2 tripping.  
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Figure 6.14 VSIs of the CIGRE 32-bus system 

  



www.manaraa.com

    100

6.5 Results, analysis and discussion 

In this chapter, the proposed VSI method was applied to practical power systems 

to demonstrate its applicability and performance in predicting the power system voltage 

stability margin and detecting the voltage marginally stable point. For the BPA 10-bus 

power system, where the voltage collapse is caused by a line outage and ULTC 

transformer operation, the results obtained from steady state analysis and time-based 

dynamic simulation match well and both demonstrate the accuracy of the VSI in 

detecting the voltage marginally stable point. The system reaches its marginally stable 

point when the predicted maximum loading point meets the load consumption and the 

index value of the load bus is very close to or equal to zero. Test results of applying the 

VSI on the IEEE 30-bus system have demonstrated that the VSI quickly identifies the 

load bus, which contributes the most to the system voltage collapse and has the minimum 

load margin, in addition to accurately detecting the system marginally stable point when 

the system loads are increased evenly. 

As mentioned earlier in Chapter 5, boundary buses, which can be found through 

off-line simulation, with relatively stable voltages are normally approximated as voltage 

sources. But in reality, their voltages are not necessarily maintained as constants. 

Therefore, when the VSI is applied to real power systems, the maximum loading point 

may not exactly correspond to the system when the VSI equals zero, even though the 

source voltage magnitude is already taken into consideration by the VSI calculation. A 

small load margin, such as 5%, instead of a zero load margin is recommended to be used 

to declare when the system has reached its marginally stable point. Furthermore, for a 
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load bus with a larger percentage of induction motor load, the reactive power 

consumption increases dramatically when the bus voltage is drifting below the rated 

voltage but above the voltage where the motor loads are dropped. In order to allow 

remedial actions to have enough time to prevent voltage collapse, a 10% -20% load 

margin, which corresponds to 0.1 – 0.2 for the VSI, is a reasonable threshold for a load 

bus with a large portion of induction motor load. 

The load margin estimated by the proposed VSI is based on the assumption of a 

steady load increment. No other contingency analysis, such as the event of machine M2 

tripping in the CIGRE 32-bus test case, is considered by the VSI at this stage. Events that 

are not severe enough to cause rapid system collapse, such as the line outage that 

happened in the first test case, should not affect the performance of the proposed VSI.  In 

order to increase the voltage stability margin and prevent a possible contingency from 

causing fast voltage collapse, a higher VSI threshold (larger load margin), such as 0.3 for 

this case, can be set to initiate preventive actions, such as switching in capacitor banks. 

The proper setting of the proposed VSI based load margin to prevent fast voltage collapse 

due to severe contingencies still needs careful off-line study. Different systems may need 

different load margins to withstand their severest contingencies.  

The overall implementation of the proposed VSI is straightforward and the 

computational demand is affordable for on-line applications. As counting floating-point 

operations is no longer practical since MATLAB incorporates a new matrix 

computational method, the computational demand of the proposed VSI is measured in the 

time that a desktop computer with Intel Pentium IV 3.2GHz CPU and 1Gigabye memory 
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space takes to calculate the VSI of the system and all load buses. Tab. 6.5 lists the VSI 

computation times of the three test cases. These computational times were measured for 

scenarios in which the network topology is changed and, consequently, matrix updating is 

required. If the system network topology remains unchanged, the computation time will 

be further reduced. 

 

Table 6.5 VSI computation time 
 

BPA 10-bus System IEEE 30-bus System CIGRE 32-bus System 
0.011 (second) 0.030 (second) 0.031 (second) 

  

6.6 Summary 

In this chapter, the developed VSI has been tested on three test cases. In the first 

test case, the VSI was verified through both steady state analysis and time-based dynamic 

simulation methods. Test results have validated the applicability and accuracy of the 

proposed VSI.  
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CHAPTER VII 
 

CONCLUSIONS AND FUTURE WORK 
 
 

7.1 Conclusions 

Power system voltage instabilities are dynamic phenomena in which numerous 

nonlinear devices are involved. In order to make the assessment of power system voltage 

instability manageable, this research focused on the root cause of the voltage instability. 

That is, voltage collapse starts when the load demand surpasses the maximum power that 

can be generated and transferred to the load center. Given the time-synchronized 

measurements of power system variables, a method was derived to predict the maximum 

transferable active power, reactive power, and complex power, respectively, of the single 

source power system. Then a VSI was devised based on these load margins, which are 

the differences between the maximum transferable powers and the corresponding load 

consumption measurements. To apply the VSI to large power systems, a computationally 

efficient network reduction method was developed to simplify the power system behind 

each load bus into a single source and a single line model with the power and voltage of 

the load bus preserved. Then, the VSI of each load bus can be readily calculated from its 

simplified single source power model. The network simplification method and the 

devised VSI provide a new voltage stability assessment method for large power systems. 

Test results of applying the proposed voltage stability assessment method on three power 

systems have demonstrated that it has the following salient features:  
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� The proposed method can identify the system voltage marginally stable 

point with satisfactory accuracy. 

� The proposed method provides system voltage security in the format of a 

load margin that is readable and informative. 

� The proposed method can identify the load bus that is the most 

susceptible to voltage collapse. 

� The proposed method is computationally efficient, and can be easily 

implemented to predict the voltage stability of large power systems in 

almost real time.  

The main contribution of this dissertation is the development of a practical 

synchronized phasor measurement based voltage stability index that can accurately 

predict the power system voltage stability with affordable computational demands for on-

line applications. The proposed voltage stability assessment method could be 

incorporated into wide area protection and control systems to monitor the power system 

voltage stability security. Also, the newly proposed network reduction method enables 

users to analyze the voltage stability of each load bus and design of distributed control 

schemes to prevent voltage collapse. 

7.2 Future work 

Although the proposed VSI can identify the voltage marginally stable point, a 

certain amount of load margins need to be maintained for the power system to withstand 

possible contingencies and to reduce the chance of voltage collapse. An investigation of 
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ways to incorporate the proposed VSI with on-line contingency analysis will improve the 

power system voltage stability security. 

Furthermore, an investigation of applying the VSI to the following areas is 

recommended: 

� Develop the proposed VSI based control scheme to control various 

reactive compensation devices, such as shunt capacitor banks, to maintain 

proper voltage security margins.  

� Incorporate the proposed VSI output into the design of an optimal load 

shedding scheme. 
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